
Hardware Platform Design Decisions in Embedded
Systems - A Systematic Teaching Approach

Falk Salewski
Embedded Software Laboratory

RWTH Aachen University
Ahornstr. 55

52074 Aachen, Germany

salewski@informatik.rwth-aachen.de

Stefan Kowalewski
Embedded Software Laboratory

RWTH Aachen University
Ahornstr. 55

52074 Aachen, Germany

kowalewski@informatik.rwth-aachen.de

ABSTRACT
Designers of embedded systems can choose between a large
variety of different hardware platforms. The question often
arising is which hardware platform is suited best for a certain
application. This decision is usually made by an expert in
industry being familiar with a variety of hardware platforms.
Therefore, it is of major interest how this expert knowledge
and the skills necessary for such a selection process can be
taught to students. In this paper a systematic hardware
platform selection process based on hardware attributes is
presented. Moreover, it is proposed how to integrate this
approach in the embedded systems education.

Categories and Subject Descriptors
K.3.2 [COMPUTERS AND EDUCATION]: Computer
and Information Science Education

Keywords
Embedded System Education, Hardware Platform Selection,
CPU vs. PLD, MCU vs. FPGA, Microcontroller, Reconfig-
urable Hardware

1. INTRODUCTION
Embedded systems integrate hardware and software com-

ponents and require developers with skills in both subjects.
Hardware skills should include the capability of adopting a
systematic approach to making design decisions in choosing
between various hardware platforms for a given embedded
systems application. These decisions are nontrivial because
there is a large number of quite different hardware platforms
available. These are CPU based systems such as microcon-
trollers (MCU) and digital signal processors (DSP), as well
as Programmable Logic Devices (PLD)1 as Complex Pro-
grammable Logic Devices (CPLD) and Field Programmable

1PLDs are also known as reconfigurable hardware

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WESE’06, October 26th, Seoul, South Korea
.

Gate Arrays (FPGA). For some applications also combi-
nations of different discrete devices or an integration of a
microprocessor core in an FPGA is preferable. Moreover,
the available hardware devices are constantly changing over
time. Thus, embedded systems education needs to include,
in addition to knowledge of basic functional properties of
current hardware platforms, the capability to systematically
analyze both functional and non-functional features of hard-
ware devices and the skills to map these to the requirements
of a given specified application to be designed.

One way to impart some of these experiences to students
is by conducting exercises and lab courses dealing with dif-
ferent hardware platforms and architectures, as for example
done in [2] or [8]. This hands on learning is very useful
to teach students the fundamental properties of different
platforms, mostly with respect to functionality. However,
we experienced in our own embedded lab course, presented
in [8], that not all influencing factors can be taught this way.
Additionally, a comparing overview of different hardware
platforms is needed. Promising approaches can be found
for example in [9] or [10]. Both give a good comparative
introduction into CPU and PLD based embedded systems.
Furthermore, an example illustrating the trade off among
different hardware architectures is given in [10]. However, a
systematic approach for hardware platform selection is miss-
ing. In this paper we are going to propose such an systematic
approach for hardware platform selection and discuss how it
could be used successfully in embedded system education.

The remainder of this paper is organized as follows. In
section 2 the selection process is analyzed in order to gain
the information necessary for further work. The steps of a
proposed hardware platform selection process are presented
in section 3. An integration of this approach in the embed-
ded systems education is proposed in section 4, followed by
a discussion in section 5. Finally, a conclusion is given in
section 6.

Note: All physical parts of an embedded system are re-
ferred to as hardware (e.g. MCU, FPGA), while the lan-
guages which determine the behavior of these systems are
referred to as software (e.g. assembly, C, VHDL).

2. AN ANALYSIS OF THE SELECTION
PROCESS

In industry, the selection of hardware platforms for indi-
vidual applications is a common task. The decision is made
on the basis of experiences from former projects and the

27



knowledge of domain experts and is influenced by many fac-
tors. First of all, the hardware platform must allow to realize
the desired functionality given by functional requirements.
Hardware attributes that define functional requirements are
the functional range and, in case of real-time systems also
the performance. Functional range defines the amount of
functionality (e.g. number of functions, size of data struc-
tures) that could be realized on a certain hardware platform.
The attribute performance defines how fast the functions are
executed.

Besides functional requirements non-functional require-
ments are of interest for the selection process. They do
not represent the required functionality itself but additional
qualities the later system must have. Typical non-functional
requirements range from reliability, maintainability and testa-
bility to power consumption and marketability.

A lot of publications are dealing with non-functional re-
quirements in software design, e.g. [6] or [7]. The strong
interaction between software and hardware components in
embedded systems demands that designers deal with the
combination of both components. The selection of hardware
platforms is usually prior or parallel to software design. In
order to build an overall system fulfilling the requirements,
it is not only important to consider hardware properties, but
also their influence on certain software properties.

Accordingly, the selection process demands knowledge of
hardware properties, including properties influencing the soft-
ware, and skills to map these properties on the requirements
of the system to be designed. In the following, we will
present an approach that can support this selection process.

3. SYSTEMATIC HARDWARE PLATFORM
SELECTION PROCESS

3.1 Connecting System Qualities with Hard-
ware Properties

As a result of the former section, functional and non-
functional requirements are important for the hardware plat-
form selection process. As a structure representing how
much a system fulfills non-functional requirements, a tree
structure as the quality attribute utility tree used in the
ATAM technique [6] developed at the SEI for software qual-
ities, seems appropriate. Since we are interested in support
for hardware platform selection, a structure representing the
influencing hardware properties on the corresponding sys-
tem qualities (utility to fulfill non-functional requirements)
and functionalities (utility to fulfill functional requirements)
is needed. According to these considerations the quality at-
tribute utility tree has been modified to a hardware attribute
tree (see Fig. 1) representing hardware attributes which in-
fluence functional and non-functional properties of the cor-
responding system.

At this stage it is necessary to find out how these hard-
ware attributes are influenced by hardware properties. This
question is quite obvious for some properties while other
require the knowledge of experts.

Another aspect is the way these dependencies are pre-
sented. We decided to provide them in a graphical way.
This presentation, which can be found for several attributes
in the figures 2 to 9, is done on an abstract level which al-
lows us to remain mostly unspecific with respect to concrete
hardware platforms.

Figure 1: hardware attribute tree

As an example, the attributes performance, functional
range and marketability and their influencing hardware prop-
erties are looked at closer in the following.

The attribute performance is influenced by the architec-
ture of the processing unit (what can be done in one cy-
cle?) and the clock frequency (how fast is one cycle?), as
depicted in Fig. 2. The architecture of the processing unit
itself is influenced by the bit width (how many bits can be
changed at a time?), by the available instructions (what can
be processed within one instruction?), by the grade of par-
allelism (how many things could be done in parallel?), and
the integrated peripherals (Which operations have dedicated
hardware modules?). Especially the last aspect is of major
interest in embedded systems.

As can be seen in Fig. 3, the functional range of a de-
vice is determined by the available memory (e.g. how much
program code could be stored) and/or the available chip
area (e.g. how much functionality can be synthesized?), de-
pending on the type of hardware platform. The functional
range is also determined by the integrated peripherals (e.g.
allow dedicated hardware modules parallel execution of cer-
tain functionalities?), the I/O capabilities (can all required
external devices be connected?) and abstraction capabilities
(how is complexity handled?). The latter factor might be
considered controversial, since lack of abstraction capabili-
ties does not limit functional range in principle. However,
possibilities to use hardware abstraction or hierarchies are
useful to improve the efficiency of many design processes [9].

In contrast to the former two attributes, marketability is
influenced by factors which are mostly outside the actual
target hardware. One of the influencing factors is time-to-
market. The development time of a device should be kept
short in order to save money and to achieve advantages
over competing companies. Hardware properties influenc-
ing time-to-market are the general development effort of a
functionality on a certain type of hardware platform (how
long does it take to implement this functionality on this
type of hardware?), the expertise of the development team
(does the team have experience in this type or a comparable
type of hardware?) and the external design support. The

28



Figure 2: Hardware attribute performance

support can be further divided in hardware and software
design support. Both include factors as the quality of avail-
able tools and the quality of available hotlines, newsgroups,
and implementation examples. Another important factor
influencing the marketability are the costs resulting from a
certain hardware platform decision. First of all, these costs
include the according target hardware platform itself and
the costs to integrate this device physically in the system
(e.g. special layout requirements). The degree of influence
to the selection process depends mainly on the number of
units which should be produced as well as on the target
market. The costs for a hardware platform in a high vol-
ume consumer product (e.g. mobile phone) are probably of
higher influence than the corresponding costs in an unique
industrial plant. Another factor are the costs of the develop-
ment environment needed for a successful implementation of
the desired functionalities. This environment includes soft-
ware as compilers, simulators and certain debugging tools,
and hardware as programming and debugging devices. Fi-
nally, the availability of a certain hardware platform is an
important factor for the marketability. If a design is de-
veloped for a certain hardware and the production of this
device is stopped, a lot of design effort will be lost if the
system cannot be migrated to another hardware platform
easily.

The hardware influences presented in the structures above
can be divided in direct and indirect influences. The hard-
ware attribute robustness, for example, is influenced directly
by hardware properties as the silicon structure or the I/O
capabilities. This is different for the hardware attribute
time-to-market. This attribute is influenced by factors as for
example the expertise available in the design team. This ex-
pertise includes knowledge about the hardware (direct hard-
ware influence), but also abilities of developing the software
for this device (indirect hardware influence). These indirect
influences integrate software design issues in the hardware
design process, as for example postulated in [3].

Due to the abstraction, applied for hardware platform in-
dependence, this representation lacks of concrete informa-
tion regarding individual hardware platforms. Since this in-
formation is important for the selection process, additional
information might be provided in form of tables which will
be presented in the following section.

3.2 Detailed Hardware Properties
For a successful selection of the optimal hardware plat-

form, it is important to have detailed information about the
individual hardware properties (as e.g. available instruc-
tions). This information could be taught, for example, on

Figure 3: Hardware attribute functional range

Figure 4: Hardware attribute testability

Figure 5: Hardware attribute marketability

Figure 6: Hardware attribute reusability

Figure 7: Hardware attribute system qualities

29



Figure 8: Hardware attribute dependability

Figure 9: Hardware attribute modifiability

basis of subject-specific literature as [9] or [10]. In our opin-
ion, a useful way to provide a survey of these information
is in form of tables as this structure allows to emphasize
similarities and differences of different types of hardware
platforms. As an example, table 1 represents information
regarding the hardware properties influencing the attribute
adaptability. In the table structure, information of each
hardware property is divided into three subcategories. A
first category contains general information applicable for all
hardware platforms. A second and third category each con-
tain information specific for one of the two main groups of
embedded systems, CPU based systems and programmable
logic devices respectively. This presentation allows to get
information about similarities and differences of these two
groups very quickly. Further subcategories can be added,
if necessary, by starting a description with the according
device name (e.g. DSP: special algorithms for data stream-
ing). Only general information should be included in these
tables in order to maintain clarity. For further information
it should be referred to relevant publications (e.g. paper,
book chapter, data sheet).

An alternative to the table structure could be a HTML
based structure which would also allow the integration of
additional levels of hierarchy. To be able to print a readable
paper on basis of this structure (e.g. for a lecture script) an
according print option has to be integrated to arrange the
different levels of hierarchy in a paper readable format.

3.3 Hardware Platform Selection
Since functional and non-functional requirements are im-

portant for the hardware platform decision process, a thor-
ough requirements engineering process should be performed
in advance (see e.g. [1]). After this process the important
qualities and functionalities for the system under considera-
tion are known. In case of programmable systems these re-
quirements have to be met by the combination of hard- and
software. For hardware, the according hardware attributes

could be found in the graphical structure presented in sec-
tion 3.1. For each attribute, influencing hardware proper-
ties could be found with help of this structure. More de-
tailed information of these properties with respect to differ-
ent hardware platforms could be found in a table structure
as presented in section 3.2 which should be supplemented
by information from specific data sheet.

On basis of this information a structured hardware plat-
form selection is possible. Trade-offs usually will be neces-
sary since the different hardware attributes often compete
with one another. It is important to mention that the struc-
ture presented should not provide the optimal solution but
should form a basis to systematically compare the available
options.

3.4 Example: 4 channel frequency generator
In order to illustrate the proposed approach, we present

the following example. The desired system is a programmable
4 channel frequency generator that is to be programmed via
an RS232 serial connection (12 byte message + CRC), with
a minimum time between messages of 100ms.

The description of the task includes several functional
requirements as performance and functional range. These
have to be used for the selection process. In order to have
complete requirements, an analysis of the non-functional re-
quirements has been done whose results can be found in
table 2.

In this example we analyze the following hardware plat-
forms (with respect to requirements rated as medium or
high):

1. low cost MCU

2. medium size MCU

3. low cost MCU + small CPLD

4. medium size FPGA

30



Table 1: Hardware properties influencing adaptability

Factors C P
influencing P L Describtion
adaptability U D

HW/SW X X Determines the effort necessary to transfer software from one device to another
dependencies X X Transfer is necessary if requirements cannot be fulfilled with the actual device

X Microcontroller families ease migration from one MCU to another of the same family
(microcontroller family = same CPU, different peripherals/packages/memory)

X Special application notes give help for migration process
X Hardware abstraction/operation systems could decrease dependencies between hardware

and higher software layers

X If the functionality of a module is described in a hardware description language (behavioral
description), the module can be transferred easily to any PLD suitable for this function
In this case, transfer involves only a new assignment of package pins

X If the functionality of a module is described in structural description, the module can
be transferred easily only to hardware platforms with a similar structure
(e.g. the same basic elements used must be available)

I/O X X Determines how easy new requirements with respect to I/O pins could be realized
capabilities

X Usually, certain I/O functionality (e.g. serial input)) is mapped to a particular I/O pin
X Some I/O functionalities can be mapped to different I/O pins (e.g. analogue input)
X Few MCUs offer a free mapping of functionalities to I/O pins
X External buses (system bus, SPI, C2I,...) ease the integration of additional

external peripherals/memory in the system.

X Usually, all I/O pins have the same properties/options (in, out, pull-up,...)
X Clock signals should be fed into the device via dedicated I/O pins
X Mapping of functionalities to I/O pins is done by software which allows maximum flexibility
X Pin assignment could influence chip area used for the design

Integrated X X Multi purpose integrated peripherals increase adaptability
peripherals

X Functionality of integrated peripherals can be determined via dedicated registers
X Integrated peripherals with a high number of options increase adaptability (and complexity)

X Almost all (digital) functionality is determined via software
X Predesigned modules are available for common functions, written in HDLs (soft cores, [4])
X Hard wired peripherals (e.g. clock divider) can be used if available
X Integrated peripherals usually do not include analog-to-digital converter

Additional influencing hardware properties can be derived from the hardware attributes performance and functional range

31



Table 2: Example: non-functional requirements
requirement priority
robustness high
reliability high
security low

maintainability low
adaptability medium
scalability medium

configurability low
reusability low
testability high

time-to-market high
cost high

mounting space medium
power consumption low

3.4.1 Implementation 1: low cost MCU
First of all, it has to be checked if the functional require-

ments can be fulfilled with this hardware platform. We as-
sume for this example that a suitable RS232 controller is
integrated in this device. Accordingly, serial communica-
tion could be realized with minimum implementation effort
and CPU burden (Read 12 byte from receive buffer, max-
imum every 100ms). Only the checking of the CRC would
need some calculation time. The generation of the frequency
signals is more challenging since no suitable on-chip periph-
eral is available. If it was the only job for the CPU, it could
have been realized in software. However, the RS232 receive
buffer has to be read and the CRC has to be checked each
time a new message is arriving. The clock frequency of the
MCU would have to be very high in order to generate four
different signals doing this job concurrently. Programming
would have to be realized on a very hardware specific level
(probably assembly). Since the maximum clock frequency
possible for this device is 16MHz, the task could not be re-
alized on this device.

3.4.2 Implementation 2: medium size MCU
A faster MCU might be a solution for the problem stated

above, or an MCU with an integrated peripheral suitable
for the 4 channel frequency generation. In this second im-
plementation we are analyzing the latter case. The MCU
has to handle the incoming RS232 messages, the according
CRC and the update of the peripheral for the frequency
generation. Since most of the real-time tasks are done by
on-chip peripherals, the MCU is able to handle the required
functionality. As can be seen from Fig. 8, the system’s ro-
bustness depends on the MCU hardware (check according
data sheet) while the reliability depends on several factors.
Hardware measures to improve the reliability could be a sim-
ple watchdog or more advanced built-in CPU- or memory-
monitors. The debug support stands for the built-in debug
hardware (JTAG, Trace, etc.) and the available software
tools. They allow us to look inside the embedded system
for verification purposes and are available for this device.
Simulation and formal verification support permit the vali-
dation and verification of various functionalities before the
software is executed on the target hardware platform. Sim-
ulation support is available for this MCU, but no real-time
simulation. Since most of the real-time functionality is re-
alized with on-chip peripherals this is not any drawback.

Formal verification support is not available for this MCU.
The testability is mostly determined by the debug support,
which has been described above.

According to Fig. 9, adaptability is influenced by some
hardware issues directly (How flexible are my internal pe-
ripherals) and by some indirectly (HW/SW dependencies,
as how easy is it to migrate to another hardware platform
if necessary?). Concerning the latter aspect, adaptability
is probably improved if the hardware platform allows the
use of higher programming languages. Further information
can be found in table 1. In this case, scalability is similar
to adaptability with an emphasis on direct hardware issues.
Additional functionality is mostly limited by factors influ-
encing performance and functional range (see Fig.. 2 and
3).

The influences of the hardware platform on the time-to-
market are of indirect nature (Fig.. 5). The general software
development effort is probably low, since the program has
to initialize and coordinate on-chip peripherals mostly. The
hardware development effort depends of the number and
complexity of the external circuits needed to operate the
hardware platform. In both cases, an influencing factor is
the usability of the according data sheets and external design
support as mentioned in section 3.1. As in all designs, the
expertise of the design team has to be considered. The costs
are determined by the cost for the individual target hard-
ware platform and the costs for the according development
environment. The planned production volume determines
the importance of these two costs.

Finally, the mounting space is determined by the package
of the target hardware platform and the amount of external
circuits needed for operation (Fig.. 7).

3.4.3 Implementation 3: low cost MCU + small
CPLD

In this third implementation, required functionality is re-
alized on a combination of an MCU and a CPLD. The MCU
handles the RS232 communication and the CRC check only
while the performance-critical part of the frequency gener-
ation is done by the CPLD. The MCU and the CPLD are
connected via 8bit address/data bus and 3 command lines.
The frequency generator can be realized in the CPLD on ba-
sis of clock dividers. Functional requirements can be fulfilled
by this implementation. The robustness of this implementa-
tion is depended on the MCU hardware, the CPLD hardware
and their interconnection. The CPLD used in this example
has damageable input circuits, according to limited protec-
tive measures (I/O capabilities). Accordingly, protective cir-
cuits for the four frequency signal inputs are necessary. The
communication between the devices is an additional point
of failure. The reliability of the application is now depen-
dent on several hardware devices which decreases reliability
in comparison to a single chip solution. On the other hand,
the different functionalities (communication/frequency gen-
eration) are strictly separated from each other, which could
reduce the amount of side effects in the according software.
Simulation and debugging is more complicated, since there
are two devices which have to be analyzed together. The
same is applicable for testability. However, since the MCU-
CPLD interface is simple and well defined, it should allow
simulation and testing of both parts separately.

The scalability with respect to a number of frequency sig-
nals mostly depends on the chip area available on the CPLD.

32



Scalability with respect to the maximum frequency depends
on the maximum clock frequencies of the CPLD. Adaptabil-
ity with respect to additional functionality concerning signal
generation depends mostly on the CPLD chip area available
(see table 1). New requirements regarding the communica-
tion depend on the MCU. Changing, e.g. from RS232 to
USB would only affect this part.

Time-to-market depends a lot on the expertise in the
design team and additional support. The implementation
involves the MCU part, the CPLD part, the communica-
tion part between the two devices and a board design in-
tegrating both devices. The costs consist of the costs for
both hardware platforms, both development environments,
a more complex printed circuit board (PCB), and protective
circuits. The mounting space is probably larger than for a
solution using only a single device.

3.4.4 Implementation 4: medium size FPGA
Since PLDs seem suitable for frequency generation, it

would be interesting to integrate the whole functionality in a
larger PLD, e.g. a medium size FPGA. For the RS232 com-
munication, a soft core controller2 is available which could
be integrated into the design. An algorithm performing the
CRC has to be integrated. The frequency generation is done
as described in 3.4.3. The only control structure would be
reading from the RS232 controller, perform the CRC and
feed the message to the frequency generator. The robust-
ness depends on the FPGA hardware, especially the I/O
capabilities. To improve robustness protective circuits for
the four frequency signals might be necessary. Reliability is
better than in the previous version since no external commu-
nication path is present. Real-time simulation is available
for this device. Testability is improved since all intermedi-
ate signal can be routed to FPGA pins or to internal test
modules without influencing the main functionality. Scal-
ability, with respect to number of signals and adaptability
with respect to additional functionality concerning signal
generation depends mostly on the FPGA chip area. Chang-
ing from RS232 to USB would mean replacing the RS232
soft core by an USB soft core (if available and small enough
to fit in device). As in all cases, time-to-market does in-
volve a lot the expertise of the design team. In contrast to
3.4.3, this approach only involves one hardware device and
no interconnections are necessary. However, the realization
of RS232 communication and CRC is probably faster on an
MCU than on an PLD. The costs for the hardware platform
is probably similar or slightly higher than in case of the
second implementation, the costs of the development envi-
ronment range from none to very high. As in section 3.4.2,
the mounting space is determined by the package of the tar-
get hardware platform and the amount of external circuits
needed for operation.

3.4.5 Hardware Selection
For the hardware selection, a survey concerning the suit-

ability of the different hardware platforms is useful, e.g. in
form of a table. This table should at least include functional
and non-functional requirements which have been consid-
ered as important. For the simple example presented above

2A core is a predesigned, preverified circuit block; a soft
core consists of a synthesizable HDL (Hardware Description
Language) description that can be retargeted to different
devices (see e.g. [4]).

Table 3: Example: comparison of alternatives
requirement 1 2 3 4
performance - + + +
functional range - ++ + ++
robustness + + - +/-
reliability +/- ++ + ++
adaptability - +/- + +
scalability - +/- + ++
testability +/- + +/- ++
time-to-market +/- ++ +/- +/-
cost ++ + +/- +
mounting space ++ + - +

this survey is done in table 3 with ”++” representing very
good to ”-” representing not suitable. The functional re-
quirements are fulfilled only by the implementations 2, 3 and
4. The platforms 2 and 4 seem to be suited best. Platform 4
seems to be very suitable if the focus is on adaptability and
scalability, while platform 2 seems to be preferable if the fo-
cus is on fast development (assuming that the development
team is familiar with all variations). As in this example the
importance of fast development is rated higher than adapt-
ability and scalability, platform 2 should be chosen.

4. APPLICATION OF THE APPROACH IN
EDUCATION

In accordance with [5, 9, 10] we believe that teaching em-
bedded systems should include CPU and PLD based sys-
tems. In our opinion, one minor aspect is whether these
different systems are taught together or one after another.
However, it is of great importance to provide a comprehen-
sive comparison of the alternatives available. Lab courses,
as already mentioned, are well suited for this comparison.
Since not all properties of the different hardware platforms
could be taught in a lab course, they should be comple-
mented by lecture contents. One possibility could base upon
the approach presented in this paper. We will integrate this
approach in one of our courses called Introduction to Embed-
ded Systems. This course is intended for computer science
students, typically in their 5th semester, and comprises the
basic properties of embedded systems. Hardware platforms
introduced in this course are MCUs, Programmable Logic
Controllers (PLC) and FPGAs. In the corresponding ex-
ercises the students work with development boards in case
of MCUs (Atmel ATmega16) and FPGAs (Xilinx Spartan3)
and a simulation environment for PLCs (CoDeSys).

We plan an integration of our approach at the end of the
course, as soon as students are familiar with the different
hardware platforms. With this background the structure
presented in this paper can be developed together with the
students. The approach can be presented in two steps as
depicted in Fig. 10. First, system functionalities and qual-
ities could be collected and organized and should result in
a hardware attribute tree similar to the tree presented in
section 3.1. In a second step, the correlation of these hard-
ware attributes and the different hardware properties can
be discussed. The correlations could be organized in tree
structures as introduced in the second part of section 3.1.
It is planned to develop the hardware attribute tree at the
end of one of the last lectures of the semester. An example
of how hardware properties influence one of these hardware

33



Figure 10: Integration of the approach in education

attributes will be given and we ask the students to think
about the dependencies between hardware properties and
the remaining hardware attributes for the following lecture.
In this following lecture, a guided discussion dealing with
these dependencies between attributes and properties takes
place. How much time is spend on this discussion depends
on the time available, but in our opinion at least 30 minutes
should be spent to cover the most important attributes3.
During the discussion probably several detailed information
about hardware properties are used to clarify the different
points of views. These information can be collected and
included into the tables introduced in section 3.2. The de-
veloping of these tables could be completed by students in
an exercise course. Proposals could be discussed if sufficient
time is available. It has to become clear that only general
information could be included in theses tables. Informa-
tion, e.g. regarding a specific MCU, could be included as
an example, but usually has to be taken from the according
data sheets. Later on, students could be provided with a set
of tables including general information for embedded hard-
ware platforms as mentioned above. This way, the approach
presented could be used as a comprehensive survey of the
material taught.

This approach covers two issues important for embedded
systems education. Firstly, it can give a survey of differ-
ent hardware platforms existent in embedded systems and
their influences concerning functional and non-functional re-
quirements. This survey eases the understanding of similar-
ities and differences of these hardware platforms. Secondly,
the approach offers a systematic methodology for hardware
platform selection based on functional and non-functional
requirements. The approach itself is flexible to include ad-
ditional properties of existent and new future devices and is
thus not dependent on any device technology.

It has to be mentioned that there is probably no other way
to replace experiences based on own projects in the field of
hardware platform selection. Accordingly, the intention of
our approach is not to give exact answers, but to assist the
student/designer in looking for the ”right things” during the
selection process. Recapitulating, our methodology should
provide students with the skills necessary to use their knowl-
edge and experiences in their own future selection processes
in a systematic way.

3the choice of the most important attributes depends on the
individual lecture context

5. DISCUSSION
The aim of this paper is to present a systematic approach

for hardware platform design decisions which could be inte-
grated into the embedded system education. The structures
and tables presented are based on experiences gained and
research done at our institute and are not claimed to be
complete.

According to the high number of different and specific
functions in modern embedded hardware platforms and cur-
rent changes in techniques and devices, it would be useful
to provide a system in which ”experts”, as domain experts
from academia and industry, and application engineers of
the according hardware and software companies, could in-
clude their knowledge. A HTML-based web system in which
participants could give feedback and propose additions to
the structure and its contents could be one way to realize
this integration of expert knowledge. Since hyperlinks are
possible in such a system, the structure of the approach
could be improved in order to clarify further interconnec-
tions between different hardware properties and hardware
attributes4.

If a web system has been realized, it might be used by
students for preparation of the discussion mentioned in sec-
tion 4. One could argue that this prevents the students
own creativity. However, in our opinion, the availability of
a ”solution” in the internet is no problem for the following
reasons: First, probably only a few students would look it
up in advance. Second, those who look it up do not neces-
sarily agree with it and hopefully present their own point of
view in the discussion during the lecture.

Another important point is the level of detail, possible for
the hardware properties influencing the different hardware
attributes. In case of some properties detailed information
can be given comparatively easy as for example done for
properties influencing the attribute adaptability in table 1
which can be extended easily if necessary. In case of other
properties detailed information depends a lot on the individ-
ual hardware platform and the intended application, as for
example in the case of properties influencing the hardware
attribute performance. In this case the general idea of issues
influencing the performance of a device should be clarified.
It is obvious that the architecture of a device influences the
amount of data that can be processed in one cycle (8bit,
16bit, 32bit, multi core, pipeline, parallel processes in FP-
GAs). It has to be made clear that the selected architecture
has to meet the intended application. If the considered ap-
plication, for example, is processing streams of ASCI charac-
ters only, an 8bit microcontroller typically would be as fast
as a 32bit processor (assuming a parallel processing of two
or four ASCI characters at a time is not possible). Other
applications might need simultaneous processing of several
tasks in real-time. In this case, the implementation on an
FPGA might be an alternative to a multitasking approach
on a single CPU which would need a comparatively high
clock frequency (which increases power consumption). If
these interconnections between hardware properties (here:
clock frequency, hardware architecture) and hardware at-
tributes (performance in this case) are understood, a system-
atic hardware platform selection is possible, also for those
aspects which are more hardware platform and application

4planned web system:
www-i11.informatik.rwth-aachen.de/index.php?id=shps

34



dependent.
Due to limited space, the feasibility of the selection method

has been illustrated with a comparatively simple application
only (see section 3.4). More complex applications would not
change the selection method itself (hardware attribute tree,
hardware properties influencing these hardware attributes,
platform selection), but would complicate the analysis pro-
cess in case of some system requirements (e.g. reliability of
platform A vs. reliability of platform B). The analysis of
other hardware attributes are less affected by the applica-
tion’s complexity, as for example the marketability. This
analysis is part of every selection process and does not rep-
resent any particular limitation to the approach presented
in this paper.

As mentioned before, we are going to integrate this ap-
proach into one of our next lectures, called Introduction to
Embedded Systems which will allow us further evaluation of
our approach.

6. CONCLUSIONS
In this paper we discussed the need for education in the

field of hardware platform selection. Even if students learn
about different hardware platforms used in embedded sys-
tems during their studies, a comprehensive comparison of
these systems is often missing.

To overcome this problem, a structured approach for teach-
ing a systematic hardware platform selection process has
been presented. In the first step of this approach, functional
and non-functional requirements are mapped to hardware
properties with the help of a graphical representation. This
mapping is done on an abstract level which allows staying
mostly hardware independent. In a second step, additional
information concerning the hardware properties presented
before, are provided in form of tables. These tables allow
a separation between general information, specific informa-
tion for CPU based hardware, and specific information for
PLD based systems. Possibilities to integrate up-to-date in-
formation in this structure have been discussed. Our plans
to integrate this approach in an embedded systems course
have been presented. We believe that this two step approach
provides a structure which could be readily integrated into
embedded system education.

7. ACKNOWLEDGMENT
We thank Xilinx (www.xilinx.com) for providing us twelve

Spartan-3 development boards used in our lab and exercise
courses.

8. REFERENCES
[1] M. Broy. Requirements engineering for embedded

systems. In Proceedings of FemSys’97, 1997.

[2] M. Delvai and A. Steininger. Teaching hardware
software codesign to software engineers. 1st
International Workshop on Reconfigurable Computing
Education, 2006.

[3] B. Graaf, M. Lormans, and H. Toetenel. Embedded
software engineering: The state of the practice. IEEE
Software, volume 20:pages 61 – 69, 2003.

[4] R. K. Gupta and Y. Zorian. Introducing core-based
system design. IEEE Design & Test of Computers,
1997.

[5] R. Hartenstein. The changing role of computer
architecture education within cs curricula. Invited
talk, Workshop on Computer Architecture Education
(WCAE’04) at 31st International Symposium on
Computer Architecture., 2004.

[6] R. Kazman, M. Klein, and P.Clements. Atam:
Method for architecture evaluation
(cmu/sei-2000-tr-004 ). Technical report, Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon
University, 2000.

[7] J. Mylopoulos, L. Chung, and B. A. Nixon.
Representing and using nonfunctional requirements: A
process-oriented approach. Software Engineering,
18:483–497, 1992.

[8] F. Salewski, D. Wilking, and S. Kowalewski. Diverse
hardware platforms in embedded systems lab courses:
A way to teach the differences. In First Workshop on
Embedded System Education (WESE), volume 2.
SIGBED Review, 2005.

[9] A. Sikora and R. Drechsler. Software-Engineering und
Hardware-Design. Hanser Verlag, 2002.

[10] F. Vahid and T. Givargis. Embedded System Design -
A unified Hardware/Software Introduction. Wiley,
2002.

35


